STATISTICAL MODEL OF ANISOTROPIC, FIBROUS,
POROUS BODIES

Yu. M. Glushkov UDC 536.24:532.526

In [1] note is made of the need for a clear separation of two problems of the physics of porous sys-
tems: description of the porous medium itself and consideration of the processes taking place in this me-
dium. For example, the motion of a liquid or the motion of Brownian particles in the pore space of a po-
rous medium cannot be studied successfully if a correct description of the medium itself is not available.
We give below a description of anisotropic porous bodies of fiberglas, a material widely used as filtrational
and heat insulating media. We give constructive definitions of two concepts, previously used in an intuitive
sense: the "structure of a porous body™" and "a homogeneous (nonhomogeneous) porous body.* For a ran-
dom medium, realizations of which are model porous bodies with a given structure, we calculate typical
averaged parameters and their distributions, used in transmission and mechanical properties calculations.
We investigate a method for experimentally analyzing the structure of real nonhomogeneous porous bodies,
based on a study of the properties of the random dependence of the porosity coefficient on the coordinates.

1. Concepis of "Structure® and "Homogeneity" as Applied to Porous Bodies. We consider the struc-
ture of a porous body as being given if the following two features are known: a) the geometrical figures
and relative sizes of the initial structural elements, for example, the fibers, and b) the probability law de~
fining the way in which the initial structural elements are jointly distributed in space.

Let x denote some property of a porous body. The concept of a "porous body homogeneous (nonho-
mogeneous) with respect to x" is defined in terms of the concept of structure as follows: a porous body is
said to be homogeneous (nonhomogeneous) with respect to x if the structure features of the body, which
have an influence on the parameter chosen, do not {do) depend on the coordinate. If we are dealing with po-
rous bodies with various structures, it is more convenient to use formulations of the type of a "porous
body with a structure y homogeneous (nonhomogeneous) with respect to x." In this case we regard the
structure of the porous body as being homogeneous (nonhomogeneous) with respect to x if the structural
features influencing x do not (do) depend on the coordinate.

2. Model Porous Bodies with a Structure A Homogeneous with Respect to @. Suppose that we are
given a random medium in the form of the pair {A (A), dP (\)}, where A (A) is a set of porous bodies A, de-
scribed in detail, with a structure A homogeneous with respect to o, while dP (A)/d) is the probability
density of each realization of A (A).

Let Qg(l) denote the set of points of a certain i-th rectilinear fiber. We distinguish a cylindrical sys-
tem of coordinates {p, @, z}, with the z axis directed towards the unit vector k. Let r;={p;, ¢, z;} be the
point of intersection of the axis of the i-th fiber Qo(l) with the plane Q containing the z axis and perpendic-
ular to the projection of the axis of the fiber on the plane z=0. Let wj be the angle between the z axis and
the axis of the fiber. The coordinates ri, wj uniquely define the position of the i-th infinite fiber in space.

We define A (A) as the set of all possible model porous bodies (filters) with a structure A homoge-
neous with respect to &, satisfying the following conditions:

1) Each filter belonging to A (A) has equal geometrical figures G, oriented identically to the vector k;
in particular, let G be the right circular cylinder bounded by the planes z=0, z=h and the cylindrical sur-
facep=R.
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2) In accord with the structural condition, all the filters of A(A) are formed by straight circular fi-
bers of radius a, with no termini inside G, where the fibers are positioned independently of one another
and their coordinates Pi, 91, 2, 03, a5, (1 = 1,2, ..., m;m = 0, 1, 2, ...) are independent random variables with
the density distributions

R, my L, 57, 8 (05 — n27Y), | (a) (2.1)
respectively.

3) The average number of fibers intersecting the domain G is equal to {(m).

4) We assume that

(YR, (adhr <1 (2.2)

The density distributions (2.1) correspond approximately to those for real anisotropic fiberglas fil-
ters and, consequently, the given set A (A) of model porous bodies is an approximate representation of the
corresponding set of real anisotropic fibered porous bodies with the appropriate structure and with the
characteristics G, f{a), and {m).

From the distributions (2.1) it follows that the function dP(3)/da, which gives the probability density
for finding a filter A =(ay, ay, . - -, @yy; Ty, Ty, - . -, Tyy) consisting of m rectilinear fibers, having radii a;
and coordinates rj, has the form

4P () = i (g )" exP (— (m) 117 (a0 das do d: d 2.3)
pe1[0,Rl, =10, 20, 2 [0, Al

The technique for deriving Eq. (2.3) is analogous, for example, to that used in [2].

According to Eq. (2.3), the probability p(m) that an arbitrary filter of A(A) consists of m fibers is
equal to
p (m) = <m>™ exp (— <m>y/ m! .4

wherein, for large values of {m), we have actually [3]
Prob {in < z [(m)} = @ ((z + 0.5 — (mD) <m)~h) 2.5)
y
® () = 20 § exp(—22/2)at

Let A4(A) be a subset of A(A) consisting of those filters in which the point r does not belong to the
fibers. Using the equation

@ = § are
Ay(A)
we obtain a relationship between (m) and the other parameters of the filter:
Y <my = V<a) [ (L) nca?>
= —<a>/In P> <& =2"aR, P><t (2.6)

where V is the volume of the domain G, &; is the length of the segment of the i-th fiber included in G, and
(a)=1—(B).

From Eqgs. (2.6) we have (o)1 for {(m)— . This is the result of the fact that in the model filter
the fibers, in meeting, penetrate one another rather than bend around each other. We can use the quantity
v€ [0, 1] as one of the criteria for the correspondence of the model to real filters, assuming that for y=1
there is complete correspondence with respect to v.

Let Py be the probability that some point in the space of an arbitrary filter of A(A) belongs simul-
taneously to j fibers (j=0, 1, 2, ...). Using Egs. (2.3) and (2.6), we obtain

Py = (— 1)/ (B> ¥ (B /! 2.7
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For small (@) we have the inequality P> >} Py and, consequently, y~ 1. In particular, the widely

=2
used fiberglas filters and the FP filters are characterized by small ().
From Eg. (2.3) we find that the probability that a spherical particle will traverse a free rectilinear
path of distance I not less than x in the direction of the unit vector £ in an arbitrary filter of A(A) is given
by

Prob {I > |9, r} = (B)exp [— z (B /<L (@, 1)3)] (2-8)
where
noaFrRy B n .
R == 55" T TEIRXKED 29)

is the mean free rectilinear path of the spherical particle of radius r in the direction of the vector  in an
arbitrary filter of A(A), E is the complete elliptic integral of the second kind, and v = ((a - r)?) / <a®>.

The term {B)Y before the exponential term in Eq. (2.8) takes into account the probability that in the
initial instant the path of the particle is free.

For |Q'Xk|=1 and {a)<« 1 the expression (2.9) may be written in the form

Loy = (B> /2L (R, 0)) (2.10)

where (L) is the average total length of the fibers encountered per unit area of the surface of a filter of
thickness h=2{a), and <1 (', 0)> <f>""! is the mean free path in the plane populated with infinite straight
lines according to the law (2.1) with mean concentration {Lg). The expression (2.10) coincides with the
result given in [4].

In accordance with Eq. (2.8), the exponent in expression (7) in [5] should be corrected by multiplying
it by the quantity (8)”. Also in [5], the expression (3) for the mean free path must be corrected in accor-
dance with the result (2.9).

We now take up the problem concerning the intersections of fibers in filters. The ways of defining
an N-fold intersection of fibers are not unique for N> 2. To calculate the concentration of intersections of
fibers with the help of Eq. (2.9), one must assume that the fiber Qo(i) takes part in an N-fold intersection

N .
if U z(1,7)) is a connected domain, where z(i, j) is the projection of Q,® N Q,’ on the plane z=0. In the
=2 .
calculation per unit filter volume, let the quantity nj denote the average number of i-fold fiber intersec-
tions. Using the Eqgs. (2.6) and (2.9), we obtain the asymptotic expression

2ny + 3ng + 0 (ny) = 8Ca) In*B) / n3(a?)? (2.11)

in which the coefficient 3 of ng is only proper when ny < n3. According to the estimate (2.7), when (@)« 1,
actually ng << n,, and the expression (2.11) gives a concentration for two-fold fiber intersections which is
2/r times less than the result given in [6] and 2/3 times less than the result given in [7].

From Egs. (2.7) and (2.11) it follows automatically that the mean intersectional volume v' when two
fibers in filters of A(A) intersect is equal to
lim v’ = lim Py’ [n, = #®<a®)? /8<a) (2.12)
R <=0

The expressiohs (2.11) and (2.12) are useful for studying the properties of filters such as strength,
elasticity, thermal conductivity, etc.

We consider an important characteristic of the random medium {A(A), dP (A\)},namely, the function
Hy{e), which is the probability density for the event that an arbitrary realization of A(A) with a given ge~
omeiry G has a space occupancy coefficient equal to @. Suppose that m fibers intersect G according to
the rule (2.1). Let 7, () denote the density of the probability that the space occupancy coefficient in G is
equal to «. If we put y=1, then 7y, is obtained by Markov's method [8]:

e = o (= ) - g -+ ()] +
to -4 (7) 45 ()7 +0 @my (2.13)

Z = ((1 —m <§>) cm-lv Gmg = M¥A,,

731



where »; are the semiinvariants [9] of the composite random variable & =fna®?V-1. For a filter with ge-
ometry G we have (£®)=4R? (¢2%n(n+1)~!. Finally, using the results (2.4) and (2.13), we obtain the fol-
lowing expression for the desired function Hy:

Ho (@)= 2 p(m)tn (@) (2.14)

N m=0

In accordance with a lemma concerning the limit of a composite random function [10], the asymptotic
expression for Eq. (2.14) has the form

H. (@)= (23’[6?2)—1/: exp [— (o — (a))?/26,%] (2.15)
6,2 = (m)(E) = 16<a)<at) /3nRr(a?), <(m)>1

It should be emphasized that for fixed (o) and V the parameter oy, depends, through (m) and {¢%), on
the geomefry of the figure G and on its orientation to the vector k.

The method used above for determining the free path in filters of A(A) may be easily generalized to
the case of filters of noncircular fibers. We consider an infinite model filter of ribbon fibers with rounded-
off edges and with the wide side oriented perpendicular to the vector k. The calculation for such filters of
the mean free path of a thin beam is made with a modified formula of the type (2.3), giving

@, 0)) = —s<BY {20 [%(Q-K) 4 2a7'E (| 2x k)] In(B}* (2.16)
by =a —b, s=ab? (1 +dnty)

where 2q' is the fiber width, 2b! is the fiber thickness, and s is the cross-sectional area of the ribbon fiber.

We assume that for constant s and {a ) the thickness of the ribbon fibers in the filters decreases in~
definitely. Then

@-1) +0

@1 — 0 (2.17)

0

lim <1 (Q, 0)> = { ’

x>0 o]

The first limit in Eq. (2.17) is real only for filters extending to infinity in a plane perpendicular to k.

The expressions (2.9) and (2.16) show that the free path in a porous body is a function of the geomet-
rical figure of the initial structural elements and their orientation in space.

3. Ejections of a Random Process a(t) for Porous Bodies with a Structure A Homogeneous with Re-
spect to @. For a porous body with structure A homogeneous with respect to @ and bounded by the infinite
planes z=0 and z=h, let the random function a(t), te (—«, «) define the space occupancy coefficient in a
cylindrical region G as a function of the coordinate t=p/2R for ¢=const, where (p, ¢) is the point of inter-
section of the axis of the cylinder G with the plane z=0. According to Egq. (2.3), this function is ergodic
{11] and independent of ¢. According to Eq. (2.15) with {m)> 1, the function a(t) is also a normal function.
We find the mean number of ejections of the graph of the function oft) at the level {a) per unit interval of
the t axis.

We write the function o(t) in the form
() =X (£, <)) +<ad, <X> =0 (3.1)

The correlation function Kg(7) of the process a(t) has the form
9 n{‘l
K. (t) = (X1X;) = 0,2 — S T (k) do (3.2)
: 3
where

X=X (4, <)), ¥ =1 —1%cos® B, T = (py — p2) / 2R

arccosfl /[, [t]|>1
Ik =@2—E@E—2(1— ) K @), 9o={ 0, lr|<t

K is the complete elliptic integral of the first kind, and oy is defined in Eq. (2.15).
Calculation of the expression (3.2) gives
ke @ = 2 (@m+buln|Th{ ", 7)<t (3.3)

m==0
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ke = 2 em|v™] [7]>1 (3.4)

m=0

where kx(7) is the correlation coefficient and the values of the coefficients a,y, by,, ¢y, are given in Table 1.

The process a(t) gives an infinite concentration of ejecta since its correlation function does not have
a second derivative at the point 7=0. An actual apparatus with a finite response registers separately the
intersections of the graph of a(t) with the level (@) at points t; and t,, providing that [t;~t,| =A, where A
is a constant of the apparatus. Determination of the concentration of such "crude" ejecta for multidimen-
sional Markov processes is reduced to the solution of a differential equation of the type of Kolmogorov's
second equation [11]. For the process in question this method is involved; therefore it is desirable to ob-
tain a result within the scope of correlation theory.

Let us suppose that we can neglect the fine details of the graph of the function @(t) on intervals of the
t axis less than A. We smooth the graph of the function in the domain te [~nd, nA], n=1, 2, 3, ... as fol-
lows:

1) On the t axis we isolate the points t;=(i~n)4, i=0, 1, 2, ..., 2n.
2) Let LA,n denote the linear homogeneous operation of constructing the Lagrange interpolating poly-
nominal of degree 2n, which coincides with the values of a{t) at the points t;.

Then
La,nla(f)] = aa,n () (3.5)

The correlation coefficient kX,A’n(T), T € [=nA, nA] for the random function OAn (t) on a bounded in~
terval has the form

kx, A, (T) = LA, nLA,'n. [kou (T)] (3-6)
For the entire axis we have, respectively,

ke a(t) =limky a,n(7) 3.7

The second and fourth derivatives of kx,A at the point 7= 0 are equal to

oy (0) = lim g5 3% d; () [1— s (1) (3.8)

i=1

K9, (0) = — iir::%% éldi (m) D; (n) [1 — K, (1A)]

where

N s
=~

I
~

;i 2 I'n! 1
a() == V' F i D=2

If the expansion of ky(7) in a series of the type (3.3) is, in fact, for the entire T axis, then substi-
tuting Eq. (3.3) into Eq. (3.8), we obtain

Fooa (0) =2 D) (S1m@m + Som bm = Sym b In A) A™2 (3.9)

m=lL

FPa (0) = 24 D) (So.m @m + Sa.m b - S3.m b In A) A™

mr=1

where

C Sm () = — Zdi(n)im, So,m () = — Zdi(n)imlni
=1 i=1
83, m (M) = §1 d; () D; () ™, 5y (n) = Z d; (%) D; (n) i™ 1 i

S, m = lims; . (n)
M—r00

The values of the coefficients 8j,m are presented in Table 2.
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TABLE 1

n Gon ban Conr

0 1.000 000 0.000 000 0.292 180

1 —0.809 581 0.750000 .| 0.018458

2 0.122773 0070312 0.004 344

3 0.005 830 0.007 324 0.001 596

4 0.001 074 0.002 002 =

5 0.000 324 0.000 788 -

TABLE 2

i | &1 l 5., 2 5j, 8 S, 4 5i, 5
. 1.3862 1.0000 0.5000 0.0000 ~0.2516
: —0.3196 —0.4514 —0.5304 —0.4262 —0.0312
2 —0.4774 0.0000 0.5637 1.0000 0.9138
2 0.4063 0.5401 0.5529 / 0.2497 --0.4790

As a consequence of the fact that the series of the form (3.3), in the case considered, is real only for
|t] =1, the error in calculating the derivatives of kx A according to the formulas (3.9) increases with an in-
crease in A, amounting to less than a percent for A= =0.5 and increasing to 5% for A=1.

In the calculation per unit interval of 7 the average number of ejecta Ny A (7g) of the random differ-
entiable function aA(t) at the level (@), the duration of which exceeds Ty, is equal to

o

Ne,a (o) = Nea (0) (1 — {p(r) de) | (3.10)

1]

where p(7) is the density of the probability that an ejection has the duration 7.

According to [12], for differentiable processes,
Noa@=n") —kia ) (3.11)

P < po(¥) = — T (kP (0) — ko 4 (0)) /8K, 4 (0) (3.12)

where in Eq. (3.12) the equality sign apphes only for 7— 0. The derivatives of kx A(T) are defined in Eqgs.
(3.8) and (3.9). As is evident from Eq. (3.10), the function Ny A(7q) does not depend on {a), R, and on f(a).
Only the amplitude of the function ¢A(t) depends on these parameters The concentration of the ejecta

Nt ,A(TD) in the calculation per unit length of the p interval is equal to

N a(%) = Ny a (t0) / 2R (3.13)
This means that
Nz, a (to) R = const (3.14)

where the quantity R is restricted by the condition (2.2).

It is of interest to compare the theoretical expressions (3.9), (3.10)-(3.12) with experimental results.

On an MF~-4 microphotometer we registered the function i(t) of an optically transparent real fiberglas fil-
ter with a suitable structure and with parameters {@)=8.52-10~3, {a)=1.57-10* cm, {a?)=2.87-107%
cm?; h=0.316 cm. We assumed that the points of intersection by the graph of the function i(t) of level (i)
correspond to the points of intersection by the graph of the function a(t) of level {a). We used the order
of calculating the intersections, partially excluding the influence of the nonhomogeneities of the real filter
on the result. For the quantity ¢, satisfying the condition

<@yt

0.99= { H,(@du

{ay—ag
we defined the corresponding quantity iy and assumed that in the filter homogeneity was violated in that re-
gion of t values where the graph of i(t) goes beyond the limits of the region [{i)—ij, (i)+ig]. In calculating
the ejecta of the function i(t) we discarded ejecta with a duration less than 0.1 cm on the diagrammatic rib~
bon and also discarded ejecta with amplitude |i— {(i)| >i;,. The experimental values obtained for the con-
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centration of ejecta were 0.49 and 0.41, respectively, for values of A=0.277 and 0.555. The theoretical
values of Ny A (A) corresponding to these experimental values are approximately 0.57 and 0.48.

4. Model of a Filter with a Structure A Nonhomogeneous with Respect to @. We consider a model of
a filter with a structure A nonhomogeneous with respect to @ in the form

a(t) =X (ta,) +a, (4.1)
ap =Y (@) + <o, <X>=0,<¥>=0

By analogy with Eq. (3.1) the random function ¢, in Eq. (4.1) plays the role of a local mean value,
where Y varies more slowly in comparison with X for a given R. This means that in Eq. (2.3) the param-
eter {(m) is replaced by a function of the coordinate which varies little at distances of order 2R (the sec-
ond structural feature). Using the representation (4.1), we reduce the study of the structure of a nonho-
mogeneous filter to the study of the function Y(t). '

The correlation function of the process (4.1) has the form

K. (1) = (X Xo> + <X, V3 4 (YV1Xa) 4 (Vi¥p (4.2)
Xi=X(t Y @) +<w), Y=Y (t)

Assuming that a section of the random function @ has a normal distribution density Hy(c) with pa-
rameters oy and {a), we obtain

K. (1) = (XX + (¥,\Yy (4.3)

where the function (X;X,) is defined in Egs. (3.2)-(3.4). Thus the correlation function of the process ;(t)
is equal to

K,(x) = Ko(v) — K (1) (4.4)
and, consequently,
6,2 =K, (0) — 0,2 (4.5)
where Ky(7) is determined experimentally.

The parameters {a), oy and the function Ky(7) furnish fairly complete information concerning the
quality of a nonhomogeneous filter. Instead of Ky we can use the concentration Ny of ejecta of the function
@y at the level (@), referred to a unit of the interval p/2R. The quantity giving the mean duration of ejecta,
namely, Ly(R)=2R /Ny, we regard as an averaged scale of the nonhomogeneities (jointly with Uyz)_ Gen-
eral considerations show that Ly(R) is constant for 2R =Ly' and increases for 2R > Ly’, where Ly' is the
duration of the shortest ejection of the function @;. For homogeneous filters

0‘y=0, Ny=07 Ka:va Ly(R)=00

The analysis given above has proceeded on the assumption that in nonhomogeneous filters the density
of the distribution h™! is constant in the k direction (2.1). If this assumptionisnot made, we must then mea-
sure yet another scale of the nonhomogeneities in the k direction.

For an n-fold (n=0) linear compression of nonhomogeneous filters in the k direction the volume of a
region of the filter with a "space occupancy coefficient” o; changes and becomes equal to n@,. If the ran-
dom quantity @, has a normal probability density, then we have, in fact, the following expression for the
filter after compression:

: d (n — 2
HU (naq) d (ml) = VQ(FLC:;: exp [—' (na12n2;;2(0t)) ] (46)
Y

Thus when the filter is compressed, the dispersion n20y2 varies in proportion to the square of the
degree of compression.

We consider now a possible way of determining oy, using hydrodynamic properties of filters. Let
Lgy(R), R = Ly' be the mean length of an ejection of the function @(t). Then a fine filter, nonhomogeneous
with respect to &, with a surface much larger than Ly2 must present a resistance Ap to the flow of a gas,
where Ap is equal to

__ hphcuy
Ap= Ka® k' (av’, e, &) (4.7)
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K o=be I (<o 1) + & +aney + D ay <ayity <o) y”

v’L—l
’_ - n <o — <™ , sl — @)™
o = 2 (— )P T Z_bn%( gy, LB
Ny=Nny+n?l N =1

where p is the viscosity of the gas, (u) is the mean speed of the flow of the gas ahead of the filter, and q;',
bt, y' are constant coefficients. By the property (4.6) the coefficients ¢;', c,' also remain unchanged during
a linear compression of the filter. In Egs. (4.7) the form of the function k' for a filter (c,'=1, Gy'=0) ho-
mogeneous with respect to ¢ is that given in {13].

Treating the experimentally determined dependence of Ap on {) for a real filter, nonhomogeneous
with respect to @, in accordance with Egs. (4.7), we can probably determlne all the constant coefficients in
the function k! and consequently, the dispersion o-y

5. Some Other Structures. We give below three schematic examples in order to get some feel for
the difference in the properties of a random function for various structures.

Structure B. Let filters with a structure B, homogeneous with respect to @, be made of rectilinear
fibers perpendicular to a plane Q, where the points of intersection of the fiber axes with this plane form a
two-dimensional Poisson field of points. The remaining features of the filters are the same as those de-
scribed in Sec. 2. For such a structure :

[Tk, Jreos|<1 (5.1)
kx(r)..{ 0, Jteosf|>1

where @ is the angle between. the plane Q and the direction p, and the function I(k) is defined in Eq. (3.2).

The section of the random function () has the density of the distribution (2.15) for 6= 721, and
Hy(@) =8(c—a'), kx=1 for §=r2"1, where the "constant" quantity @' also has the density of the distribution
(2.15). When 6=72"1, the function a(t) loses its ergodic property.

Structure C. Let filters with a structure C, homogeneous with respect to &, be formed from recti~
linear mutually parallel fibers, where the points of intersection of the axes of these fibers with a plane
perpendicular to them form the nodes of a rectangular mesh with parameters d and d'. The correlation
coefficient of the process a(t) for such a filter has the form

_[¥ (. 0), OFn/2 »
k*"(r)“{ 1, 6=mn/2 (5.2)

where ¥ is a periodic function with the period d/2R cos 6 and, consequently, the concentration of the ejecta
of the function o(t) above the level (@) is equal to 2R cos 8/d in the calculation made per unit of the T in-
terval.

Structure A'. In the filters of A(A), homogeneous with respect to @, let a portion of the ecircular fi-
bers be replaced by aggregates of double, triple, etc.(uncarded) fibers. A structure A! is then formed
which is different from the structure A, homogeneous with respect to @, since the set of initial structural
elements now contains, along with the single fibers, also uncarded aggregates. If, in a first approximation,
we consider such aggregates as circular fibers with increased radii, then the presence of the latter in fil-
ters manifests itself, in accordance with Eq. (2.15), in an increased [in comparison with filters of A(A)]
amplitude of the random oscillations of the function a(t), without at the same time changing the concentra-
tion of its intersections with the level (a). Filters with uncarded fibers are encountered in practice.

The examples given show that the analysis of the random function &(t) enables us to obtain useful in-
formation concerning the structure of a given fibered material.
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