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In I1] note is made of the need for a c lear  separation of two problems of the physics  of porous s y s -  
tems:  descript ion of the porous  medium i tself  and considerat ion of the p r o c e s s e s  taking place in this me-  
diam. Fo r  example, the motion of a liquid or  the motion of Brownian par t ic les  in the pore space of a po-  
rous medium cannot be studied successful ly  if  a c o r r e c t  descript ion of the medium i tself  is not available. 
We give below a description of anisotropic porous bodies of f iberglas,  a mater ia l  widely used as fil trational 
and heat insulating media. We give construct ive definitions of two concepts,  previously  used in an intuitive 
sense: the "s t ruc ture  of a porous body" and "a homogeneous (nonhomogeueous) porous body." For  a r an-  
dom medium, real izat ions  of which a re  model porous bodies with a given structure,  we calculate typical 
averaged pa rame te r s  and thei r  distributions, used in t ransmiss ion  and mechanical  proper t ies  calculations. 
We investigate a method for exper imental ly  analyzing the s t ructure  of real nonhomogeneous porous bodies, 
based on a study of the p roper t i es  of the random dependence of the poros i ty  coefficient on the coordinates.  

1. Concepts of "Structure" and "Homogeneity" as  Applied to Porous  Bodies. We consider  the s t ruc-  
ture  of a porous  body as being given if  the following two features are  known: a) the geometr ical  f igures 
and relat ive s izes of the initial s t ruc tura l  e lements ,  for example, the fibers,  and b) the probabil i ty law de- 
fining the way in which the initial s t ructura l  elements  are  jointly distributed in space. 

Let x denote some proper ty  of a porous body. The concept  of a "porous body homogeneous (nonho- 
mogeneous) with respec t  to x" is  defined in t e r m s  of the concept of s t ruc ture  as follows: a porous  body is  
said to be homogeneous (nonhomogeneous) with respec t  to x if the s t ructure  features  of the body, which 
have an influence on the p a r a m e t e r  chosen, do not (do) depend on the coordinate. If we are  dealing with po-  
rous  bodies with var ious  s t ruc tures ,  it is  more  convenient to use formulat ions of the type of a "porous 
body with a s t ruc ture  y homogeneous (nonhomogeneous) with respect  to x." In this case we r ega rd  the 
s t ructure  of the porous  body as being homogeneous (nonhomogeneous) with respec t  to x if the s t ructural  
features influencing x do not (do) depend on the coordinate.  

2--  Model Porous  Bodies with a Structure A Homogeneous with Respect  to a .  Suppose that we are  
given a random medium in the form of the pa i r  {A (A), dP (h)}, where A (A) is a set  of porous  bodies X, de- 
scr ibed in detail, with a s t ructure  A homogeneous with respec t  to (~, while dP (k)/dX is the probabil i ty 
density of each real izat ion of A (A). 

Let Q0 (i) denote the set of points of a cer ta in  i - th  rec t i l inear  fiber. We distinguish a cylindrical  sys -  
tem of coordinates {p, ~, z}, with the z axis directed towards the unit vector  k. Let  r i ={Pi, r zi} be the 
point of in tersec t ion  of the axis of the i - th  fiber Q0 (i) with the plane Q containing the z axis and perpendic-  
ular to the projection of the axis of the fiber on the plane z = 0. Let  wi be the angle between the z axis and 
the axis of the fiber. The coordinates  ri ,  wi uniquely define the position of the i - th  infinite fiber in space. 

We define A (A) as th.e set of all possible model porous bodies (filters) with a s t ructure  A homoge- 
neous with r e spec t  to ~, sat isfying the following conditions: 

1) Each fi l ter  belonging to A (A) has equal geometr ical  f igures G, oriented identically to the vector  k ;  
in par t icu lar ,  let G be the right c i r cu la r  cyl inder  bounded by the planes z = 0, z = h and the cyl indrical  su r -  
face p = R. 
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2) In acco rd  with the s t ruc tu ra l  condition, all  the f i l te rs  of A (A) a re  f o rmed  by s t ra ight  c i r cu l a r  f i -  
be rs  of rad ius  a,  with no t e rmin i  inside G, where  the f ibers  a r e  posi t ioned independently of one another  
and the i r  coordinates  p~, (p~, z~, ~ ,  a~, (i = 1, 2 . . . . .  m; ra = 0, i ,  2, ...} a r e  independent random va r i ab l e s  with 
the densi ty dis t r ibut ions 

R -1, (2a) -1, h -1, 8 (oh - -  ~2-1), / (a) (2.15 

respec t ive ly .  

3) The average  number  of f ibe r s  in te r sec t ing  the domain G i s  equal to <m). 

4) We a s sum e  that  

<a>R-* . ~  t, <a)h-* . ~  t (2.2) 

The density distributions (2.1) correspond approximately to those for real anisotropic fiberglas fil- 
t e rs  and, consequently, the given set A (A) of model porous bodies is an approximate representation of the 
cor responding  set  of rea l  an iso t ropic  f ibered  porous  bodies with the appropr ia t e  s t ruc tu re  and with the 
c h a r a c t e r i s t i c s  G , f ( a ) ,  and <m>. 

F r o m  the dis t r ibut ions (2.1) i t  follows that  the function dP (k) /dX,  which gives the probabi l i ty  density 
for finding a f i l ter  k =(a 1, a2, �9 �9 am;  r l ,  rz, �9 �9 r m) consis t ing of m rec t i l inea r  f ibers ,  having radi i  a i 
and coordinates  r i, has the fo rm 

dP(~) --~t ( ~ ) m e x p (  - <m>)l-I/(ai)daldpld(hdzi (2.35 

p ~ [0, R], (p ~ [0, 2n], z ~ [0, hl 

The technique for  der iving Eq. (2.3) is  analogous,  for  example ,  to that used in [2]. 

According to Eq. (2.3), the probabi l i ty  p(m) that  an a r b i t r a r y  f i l ter  of A(A) cons i s t s  of m f ibe r s  is  
equal to 

p (m) = <m> m exp (-- <m>),/m! (2.4) 

wherein, for large values of (m>, we have actually [3] 

Prob {m < x [ <m>} ~ (D ((x + 0.5 - -  <m>) <m>-V,) (2.5) 
Y 

�9 (y) = (2n)-'/' I exp (-- t ~ / 2) dt 
--Cs~ 

consis t ing  of those f i l t e r s  in which the point r does not belong to the Let  AI(A) be a subset  of A(A) 
f ibers .  Using the equation 

<It>= f dP (~5 
&t(A) 

we obtain a re la t ionship  between (m)  and the other p a r a m e t e r s  of  the f i l ter :  

7 <m> ,.=. V<~> / < ~> ~<a~> 

7 = - -  <a> / In <~>, <~> = 2 - i  ~R, <~> ~< t (2.6) 

where  V is  the volume of the domain G, ~i i s  the length of the segment  of the i - t h  f iber  included in G, and 
<a> = i- <#). 

From Eqs. (2.65 we have <c~>--~ 1 for (m> --~ ~. This is the result of the fact that in the model filter 
the fibers, in meeting, penetrate one another rather than bend around each other. We can use the quantity 
Te [0, i] as one of the criteria for the correspondence of the model to real filters, assuming that for T = 1 
there is complete correspondence with respect to T. 

Let Pj' be the probability that some point in the space of an arbitrary filter of A(A) belongs simul- 
taneously to j fibers (j =0, i, 2, ...5. Using Eqs. (2.3) and (2.65-, we obtain 

P/= (-- i) ~ <~> In j <~> / ]! (2.7) 
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For  smal l  <(~> we have the inequali ty P, '  ~ ~, P /  and, consequently,  7 ~  1. In pa r t i cu la r ,  the widely 

used  f ibe rg las  f i l t e r s  and the FP f i l t e r s  a r e  c h a r a c t e r i z e d  by smal l  <~>. 

F r o m  Eq. (2.3) we find that the probabi l i ty  that  a spher ica l  pa r t i c le  will t r a v e r s e  a f ree  r ec t i l i nea r  
path of dis tance l not l ess  than x in the di rect ion of the unit vec to r  ~ in an a r b i t r a r y  f i l t e r  of A(A) is given 
by 

Prob { / > x [ ~ ,  r} = (~>~ exp [-- x <~>~/</(~, r)>] (2.8) 

where  

<(a @ r)2> <~>" g (2.9) 
</ (.Q, r)> = -- 2 <a=r> vh1<~> 2E(I~xkl) 

is the mean free rectilinear path of the spherical particle of radius r in the direction Of the vector ~ in an 
arbitrary filter of A(A), E is the complete elliptic integral of the second kind, and v = <(a + r)2> / <a2>. 

The term <fi>v before the exponential term in Eq. (2.8) takes into account the probability that in the 
initial instant the path of the particle is free. 

For [~'xk[ =i and <~)<< 1 the expression (2.9) may be written in the form 

<L0> = g<~> / 2~(l (~Q', 0)> (2.10) 

where <L0> is the average totallength of the fibers encountered per unit area of the surface of a filter of 
thickness h = 2 <a>, and </(~', 0)> <~>-' is the mean free path in the plane populated with infinite straight 
lines according to the law (2.1) with mean concentration <L0>. The expression (2.10) coincides with the 
result given in [4]. 

In accordance with Eq. (2.8), the exponent in expression (7) in [5] should be corrected by multiplying 
it by the quantity <fl>v. Also in [5], the expression (3) for the mean free path must be corrected in accor- 
dance with the result (2.9). 

We now take up the problem concerning the intersections of fibers in filters. The ways of defining 
an N-fold intersection of fibers are not unique for N > 2. To calculate the concentration of intersections of 
fibers with the help of Eq. (2.9), one must assume that the fiber Q0 (I) takes part in an N-fold intersection 

N 
if U z (I, ]) is a connected domain, where z(i, j) is the projection of Q0(~) n Q0 j on the plane z = 0. In the 

1------2 

calculation per unit filter volume, let the quantity ni denote the average number of i-fold fiber intersec- 
tions. Using the Eqs. (2.6) and (2.9), we obtain the asymptotic expression 

2n2 @ 3na @ 0 (n4) = 8(a> In~<~) / ~(a~> ~ (2.11) 

in which the coefficient 3 of n 3 is only proper when n4<< n 3. According to the estimate (2.7), when <(~)<< 1, 
actually n S << n2, and the expression (2.11) gives a concentration for two-fold fiber intersections which is 
2/~" times less than the result given in [6] and ~/a times less than the result given in [7]. 

From Eqs. (2.7) and (2.11) it follows automatically that the mean intersectional volume v' when two 
fibers in filters of A(A) intersect is equal to 

l i m  v' = l ira p2' /n  z = ~3 <a2)~ / 8 ( a  ) ( 2 . 1 2 )  

The expressions (2.11) and (2.12) are useful for studying the properties of filters such as strength, 
elas t ic i ty ,  t h e r m a l  conductivity,  etc.  

We cons ider  an impor tan t  c h a r a c t e r i s t i c  of the random medium {A(A), dP (X)},namely, the function 
Hx(~) , which is  the probabi l i ty  densi ty  for  the event  that  an a r b i t r a r y  rea l iza t ion  of A(A) with a given ge -  
ome t ry  G has  a space  occupancy coeff icient  equal to ~. Suppose that  m f ibers  i n t e r sec t  G according  to 
the rule  (2.1). L e t  Tm(~) denote the densi ty of the probabi l i ty  that  the space  occupancy coeff icient  in G is 
equal to ~.  I f  we put 7 = 1, then T m iS obtained by Markov ' s  method [8]: 

~' i 4 + -5- + 0 (zm-'/,)} + ~ z-2 "--V --  (2.13) 

z = Ca-- rn <~>) zm -I, ~ = mz~ 
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where  n i a r e  the semi invar ian t s  [9] of the composi te  r andom var iab le  ~ = ~ n a ~ V  -~ . For  a f i l ter  with ge -  
ome t ry  G we have (~n)=4R2 (~n-2 )n (n+ l ) - l .  Finally,  using the r e su l t s  (2.4) and (2.13), we obtain the fo l -  
lowing express ion  for  the des i red  function Hx: 

c o  

H~(~) = F, p ( ~ ) ~  (~) (2.14) 

In accordance  with a l e m m a  concerning the l imi t  of a composi te  random function [10], the asympto t ic  
express ion  for  Eq. (2.14) has the f o r m  

Hx (~) = (2~x2) -'/' exp [-- (a--  <a>)2/2~ ~] (2.15) 

~ = < m > ( ~ ) = 1 6 < a > < a 4 > / 3 g R h < a ~ > ,  < m > ~ l  

I t  should be emphas ized  that for  fixed <~) and V the p a r a m e t e r  fix depends, through (m)  and (~9), on 
the geome t ry  of the f igure  G and on i ts  or ientat ion to the vec tor  k. 

The method used above for  de termining the f ree  path in f i l t e r s  of A(A) may  be eas i ly  genera l ized  to 
the case  of f i l t e r s  of nonci rcular  f ibers .  We cons ider  an infinite model f i l ter  of r ibbon f ibers  with rounded-  
off edges and with the wide side or iented  perpendicu la r  to the vec tor  k. The calculat ion for such f i l t e r s  of 
the mean  f ree  path of a thin beam is  made with a modified formula  of the type (2.3), giving 

<l O, 0)> = - - s  <~){2b' [~ (ft.k) ~- 2n-~n (I ft • k[)] ln@>} -~ (2.16) 

b ' % = a ' - - b ' ,  s = n b  '~ (1-~4n-1%) 

where  2 a '  is  the f iber  width, 2b'  is the f iber  thickness ,  and s is the c r o s s - s e c t i o n a l  a r e a  of the r ibbon f iber .  

We a s s u m e  that  for constant  s and ( a )  the thickness  of the r ibbon f ibe r s  in the f i l t e r s  d e c r e a s e s  in-  
definitely. Then 

lim(/(ft ,  0)) = { 
O, O.k) ~0  

x ~  co, (ft.k) = 0 (2.17) 

The f i r s t  l imi t  in Eq. (2.17) i s  rea l  only for f i l te rs  extending to infinity in a plane perpendicu la r  to k. 

The expres s ions  (2.9) and (2.16) show that  the f ree  path in a porous  body is  a function of the geome t -  
r i ca l  f igure of the initial  s t ruc tu ra l  e l ements  and their  or ientat ion in space.  

3. Eject ions of a Random P r o c e s s  ~(t) for Po rous  Bodies with a Structure  A Homogeneous with R e -  
spect  to a .  For  a porous  body with s t ruc tu re  A homogeneous with r e s p e c t  to a and bounded by the infinite 
planes z = 0 and z = h, let  the r andom function ~(t), t ~ ( -  0% ~) define the space occupancy coeff icient  in a 
cyl indr ical  region G as a function of the coordinate t = p / 2 R  for ~=cons t ,  where  (p, go) is  the point of i n t e r -  
sect ion of the axis of the cyl inder  G with the plane z =0. According to Eq. (2.3), this function is  ergodic  
[11] and independent of go. According to Eq. (2.15) with (m)>> 1, the function a(t) is  a lso  a normal  function. 
We find the mean number  of e ject ions of the graph  of the function a(t) at the level  ( a )  per  unit in terval  of 
the t axis .  

We wri te  the function a(t) in the f o r m  

(t) = X ( t , ( ~ ) ) - ~ ( ~ ) ,  (X)  = 0  (3.1) 

The cor re la t ion  function Kx(~) of the p r o c e s s  a(t) has  the fo rm 

K~:('~) -~ (X~X~)  = ~ T I I (k)  dO (3.2) 
% 

where  

X ~ = X ( t ~ ,  (a)) ,  k 2 = l - T  ~cos ~0, ~ - - - - (p l - -p~) /2R  

[ arccos] l /~l ,  I ~ l > t  
I (k) = (2 - -  k ~) S (k) - -  2 (~ --  k ~) K (k), 00 = 0, I ~ ] ~ ~ 

K is  the complete  ell iptic integral  of the f i r s t  kind, and ~x is  defined in Eq. (2.15). 

Calculation of the express ion  (3.2) gives  
c o  

k~(~)= ~ (a~+b~ln l~ l ) l~ l ,  I~l~<i (3.3) 
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oo 

k~(~)= ~, c~l~-ml, I~t>l  (3.4) 

where  kx(T) is  the c o r r e l a t i o n  coef f ic ien t  and the va lues  of  the coef f ic ien t s  am ,  bin, c m a r e  given in Table  1. 

The p r o c e s s  a(t) g ives  an infinite concen t r a t i on  of e j ec t a  s ince  i ts  c o r r e l a t i o n  funct ion does not have 
a second  de r iva t ive  a t  the point  �9 = 0. An actual  a p p a r a t u s  with a finite r e s p o n s e  r e g i s t e r s  s e p a r a t e l y  the 
i n t e r s e c t i o n s  of the g r a p h  of a(t)  with the leve l  (a> at  points  t 1 and t2, p rov id ing  that  [ t l - t2[  - A ,  w h e r e  A 
is  a cons tan t  of the appara tus .  D e t e r m i n a t i o n  of  the concen t r a t ion  of  such % r u d e "  e j ec t a  for  m u l t i d i m e n -  
s ional  Markov  p r o c e s s e s  is  r e d u c e d  to the solut ion of a d i f ferent ia l  equat ion of  the type of K o l m o g o r o v ' s  
second  equat ion [11]. F o r  the p r o c e s s  in ques t ion  this  me thod  is  involved;  t h e r e f o r e  i t  is  des i r ab le  to ob-  
t~uin a r e s u l t  within the scope  of c o r r e l a t i o n  theory .  

Le t  us suppose  that  we can neg lec t  the fine de ta i l s  of the g raph  of  the function a(t) on i n t e rva l s  of the 
t axis  l e s s  than A. We smoo th  the g raph  of  the function in the domain  t e  l - h A ,  hA], n = 1, 2, 3, . . .  as  fo l -  
lows:  

1) On the t ax is  we i so la te  the points  t i=  ( i - n )  A , i = 0 ,  1, 2, . . . ,  2n. 
2) Let  LA, n denote  the l i nea r  h o m o g e n e o u s  opera t ion  of cons t ruc t i ng  the L a g r a n g e  in te rpo la t ing  po ly -  

no rn ina lo f  deg ree  2n, which  co inc ides  with the va lues  of ce(t) at  the points  t i .  

Then 

La. ~ [~ (t)l = aA, ~ (t) (3.5) 

The c o r r e l a t i o n  coef f ic ien t  kx,A, n (T), ~" C [ - - r~ ,  hA] for  the r a n d o m  function C~A, n (t) on a bounded i n -  
t e r v a l  has  the f o r m  

k~, ~,,n (~) = LA, ~L~, ~ [k~ (~)] (3.6) 

F o r  the en t i r e  axis  we have,  r e s p e c t i v e l y ,  

k~, ~ (~) ----- lira k~, ~, ~ (T) (3 .7)  

i 

The s econd  and four th  de r i va t i ve s  of  kx, A a t  the point  T= 0 a r e  equal to 

/c: ~ (0) = lira 2o ~ dl (n) [l --  k~ (iA)] (3.8) 
' n~oo A2 i=I 

7.(~) 24 /~--i ~ , a  (0) = --  lim-~- di(n)Di(n) [ l - -  k~ (ih)] 

whe re  
n 

d~ (n) = (-- 1) ~ i~: (~ _ 0! (~ + 0! ' = 

I f  the expans ion  of kx(T) in a s e r i e s  of the type (3.3) i s ,  in fact ,  for  the en t i r e  T ax is ,  then sub s t i -  
tut ing Eq. (3.3) into Eq. (3.8), we obtain 

e~ 

k'~, ~ (0) = 2 ~ (sL,~ am + S2,m bm + Si,m bm In h) A m-2 
7 r $ ~ 1  

co 

k(41 = ~,~ (0) 24 ~. (S3,mam-kS~,mbmq-S3,mbmlnh) h m-4 
? r i l l  

w h e r e  

(3.9) 

n 

i=i i~l 

n 

Sa, m(n)=  ~ d  i(n) o i(n) i m, sa, m(n) = ~ d  i(n) D~(n)i mlai  
i = 1  i=i 

sj. rn = lirn sj, ,~ (n) 
n ~ c c  

The va lues  of  the coef f i c ien t s  sj ,  m a r e  p r e s e n t e d  in Table  2. 
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TABLE 1 

n a2n b2n c2n+1 

0 
i 
2 
3 
4 
5 

i.000 000 
--0.809 58i 

0A22 773 
0.005 830 
0.00i b74 
0.000 32i 

0.000000 
0.750 000 

--0.070 312 
0.007 324 
0.002 002 
0.000 788 

01292 t80 
0.018 458 
0.004 34t 
0.00t 596 

TABLE 2 

j s j, 1 s j. 2 s j, a sj, 4 s j, 5 

i.3862 
--0.3i96 
--0.4774 

0.4063 

1.0000 
--0.45i4 

0,0000 
0.540i 

0.5000 
--0.5304 

0.5637 
0.5529 

0.0000 
--0.4262 

i.0O00 
0.2497 

--0.25t6 
--0.0312 

0.9t38 
--0.4790 

As a consequence of the fact that the se r ies  of the fo rm (3.3), in the case considered,  is real  only for  
IT[ --< 1, the e r r o r  in calculating the derivatives of kx,A according to the formulas  (3.9) increases  With an in-  
c rease  in A, amounting to less  than a percent  for A--  < 0.5 and increasing to 5% for A= 1. 

In the calculation per unit interval  of T the average number of ejecta  Nx, A (T 0) of the random differ-  
entiable function ~A(t) at the level (~>, the duration o f  which exceeds To, is equal to 

~0 

~,  ~ (c0) = N~ ~ (0) ( l  - -  f ;  (~) ~) (3 .10)  
0 

where p(T) is the density of the probabili ty that an ejection has the duration T. 

According to [12], for differentiable p rocesses ,  

N~ ~ (0) = ~-1 t / i _  k : ~  (0) (3 .11)  

p (~) ~< po (~) 2 _ ~ (k~)~ (0) - k: ~, ~ (0)) / s k :  ~ (0) (3 .12)  

where in Eq. (3.12) the equality sign applies only for T ~  0. The derivatives of kx,A(T) a re  defined in Eqs. 
(3.8) and (3.9). As is evident f rom Eq. (3.10), the function Nx,A(T 0) does not depend on (a ) ,  R, and oa f ( a ) .  
Onty the amplitude of the function aA(t) depends on these pa ramete r s .  The concentration of the ejecta  
N'x,A(T 0) in the calculation per  unit length of the p interval is equal to 

N~, ~ (c0) = N~, ~ (%) / 2R (3.13) 

This means that 

N~, ~ (%) R = coast (3.14) 

where the quantity R is r e s t r i c t ed  by the condition (2.2). 

I t  is  of in teres t  to compare  the theoret ical  expressions (3.9), (3.10)-(3.12) with experimental  resul ts .  
On an MF-4 microphotometer  we reg i s te red  the function i(t) of an optically t ransparent  real  f iberglas f i l -  
mr  with a suitable s t ructure  ~nd with pa rame te r s  (~)=  8.52- 10 -a, (a)= 1.57.10 - a c m ,  (a~)=2.87 �9 10 -8 
cm2; h = 0.316 cm. We assumed that the points of intersect ion by the graph of the function i(t) of level (i) 
co r respond  to the points of intersect ion by the graph of the function ~(t) of level (~). We used the order  
of calculating the intersect ions,  par t ia l ly  excluding the influence of the nonhomogeneities of the real  fi l ter 
on the result .  For  the quantity ~0 satisfying the condition 

~, a i~ao 0.99 = H~ (a) da 

we defined the corresponding quantity i 0 and assumed that in the f i l ter  homogeneity was violated in that r e -  
gion of t values where the graph of i(t) goes beyond the l imits  of the region [ ( i ) - i0 ,  (i)+i0]. In calculating 
the ejecta of the hmction i(t) we discarded ejecta with a duration less  than 0.1 cm on the d iagrammat ic  r ib -  
bon and also discarded ejecta with amplitude [ i -  (i)[ > i 0. The experimental  values obtained for  the con- 
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centra t ion of e jec ta  we re  0.49 and 0.41, r e spec t ive ly ,  for va lues  o f A = 0 . 2 7 7  and 0.555. The theore t ica l  
values  of Nx,A (A) cor responding  to these  exper imenta l  values  a r e  approx imate ly  0.57 and 0.48. 

4. Model of a F i l t e r  with a St ructure  A Nonhomogeneous with Respec t  to c~. We consider  a model of 
a f i l te r  with a s t ruc tu re  A nonhomogeneous with r e s p e c t  to ~ in the fo rm 

~(t) = X (t, ai) ~-a  i (4.1) 
a i = Y ( t )  -l- (r <X> = 0 , (Y) = 0  

By analogy with Eq. (3.1) the r andom function o~ 1 in Eq. (4.1) p lays  the role  of a local mean value,  
where  Y v a r i e s  m o r e  slowly in compar i son  with X for a given R. This  means  that in Eq. (2.3) the p a r a m -  
e t e r  <m) is  r ep laced  by a function of the coordinate  which va r i e s  l i t t le at  d is tances  of o rder  2R (the s e c -  
ond s t ruc tu ra l  feature) .  Using the r ep resen ta t ion  (4.1), we reduce  the study of the s t ruc tu re  of a nonho- 
mogeneous f i l t e r  to the study of the function Y(t). 

The co r re l a t ion  function of the p r o c e s s  (4.1) has  the f o r m  

K~ (~) ---- <XIX~> ~- <XIY~> ~- <YiX~> -~- <ViY2> (4.2) 
X~ = X(t~, Y(t~) +<a>) ,  Y~=Y( t~ )  

Assuming  that  a section of the r andom function a 1 has a normal  distr ibution densi ty  Hy(a  l) with p a -  
r a m e t e r s  (ry and (a>, we obtain 

K~ (~) -~ <XIX~> + <Y~Y~> (4.3) 

where  the function 
is equal to 

<XiX2> is  defined in Eqs. (3.2)-(3.4). 

K v (~) = K~(T) 

Thus the cor re la t ion  function of the p r o c e s s  c~l(t) 

- -  K ~ (~) ( 4 . 4 )  

and, consequently,  

(ry ~ = K ~  (0) - -  ~ 2  ( 4 . 5 )  

where  Ka(T) is de te rmined  exper imenta l ly .  

The p a r a m e t e r s  <a>, ~y and the function Ky(~-) furnish fa i r ly  comple te  informat ion  concerning the 
quali ty of a nonhomogeneous f i l te r .  Ins tead  of Ky we can use the concentrat ion Ny of e jec ta  of the function 
a 1 at  the level  <~>, r e f e r r e d  to a unit of the in te rva l  p/2R. The quantity giving the mean duration of e jecta ,  
namely ,  Ly(R) = 2R / Ny ,  we r e g a r d  as  an ave raged  sca le  of the nonhomogenei t ies  (jointly with ~y2). Gen-  
e ra l  cons idera t ions  show that  Ly(R) is  constant  for  2R-< L x'  and i n c r e a s e s  for  2R > Ly ' ,  where  Ly '  is  the 
duration of the s ho r t e s t  e ject ion of the function a 1. For  homogeneous f i l t e r s  

(~g = 0 ,  Ny = 0 ,  K: = K ~ ,  Ly(B)----- oo 

The ana lys i s  given above has  p roceeded  on the assumpt ion  that  in nonhomogeneous f i l t e r s  the densi ty 
of the dis t r ibut ion h -1 is  constant  in the k di rect ion (2. i) .  If  th is  assumpt ion  is  not made,  we mus t  then m e a -  
sure  yet  another  sca le  of the nonhomogenei t ies  in the k direction.  

Fo r  an n-fold  ( n -  0) l inear  c o m p r e s s i o n  of nonhomogeneous f i l t e r s  in the k di rect ion the volume of a 
region of the f i l t e r  with a "space  occupancy coeff icient"  a t  changes and becomes  equal to na  1. I f  the r a n -  
dom quantity ~l  has  a normal  probabi l i ty  density,  then we have, in fact ,  the following express ion  for  the 
f i l ter  a f t e r  compress ion :  

V'2-~d (hal)n% exp I-- (nai2n~% n <a>) 2 H~ (hal) d (hal) = ] (4.6) 

Thus when the f i l t e r  is c o m p r e s s e d ,  the d i spers ion  n2~y z v a r i e s  in propor t ion  to the square  of the 
degree  of compress ion .  

We consider  now a poss ib le  way of de termining Cry, using hydrodynamic  p r o p e r t i e s  of f i l te rs .  Let  
Ly(R), R-< Ly '  be the mean  length of an eject ion of the function at(t) .  Then a fine f i l te r ,  nonhomogeneous 
with r e s p e c t  to a ,  with a sur face  much l a rg e r  than Ly 2 mus t  p r e s e n t  a r e s i s t ance  Ap to the flow of a gas,  
where  Ap is equal to 

~ p  ----- 4~h <u> <a> 

<a% k' (a~', c1', ~2') (4.7) 
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oo 

k' = b' cl' In (<~> 7') + c~' -~ ao' cl' -~ ~ a( <a1{-1> <a> T '{ 
i= l  

co oo 
C1"~-- Z ( - - l )  ~ <(O~l --<ff>)n> ~=o <~>~ , c~' = b' ~, (--I)~+~N~ <(~ -  <~>)'b 

n=l  <al>n 
N~=Nn_lJ-n -I, N1:i 

where  ~ is  the v iscos i ty  of the gas,  (u) is  the mean speed of the flow of the gas  ahead of the f i l te r ,  and a t ' ,  
b ' ,  T' a r e  constant  coeff icients .  By the p rope r ty  (4.6) the coefficients el '  , c 2' a lso r ema in  unchanged during 
a l inear  compres s ion  of the f i l ter .  In Eqs. (4.7) the fo rm of the function k '  for a f i l t e r  (c1'= 1, e 2' =0) ho-  
mogeneous with r e s p e c t  to ~ is  that  given in [13]. 

Trea t ing  the exper imenta l ly  de te rmined  dependence of Ap on (~> for  a rea l  f i l ter ,  nonhomogeneous 
with r e s p e c t  to ~, in accordance  with Eqs. (4.7), we can probably  de te rmine  all the constant  coefficients  in 
the function k '  and, consequently,  the d i spers ion  ay2. 

5. Some Other St ructures .  We give below three  schemat ic  examples  in order  to get some feel for  
the difference in the p r o p e r t i e s  of a r andom function for  var ious  s t ruc tu res .  

St ructure  B. Let  f i l te rs  with a s t ruc tu re  B, homogeneous with r e s p e c t  to ~,  be made of r ec t i l inea r  
f ibers  perpendicu la r  to a plane Q, where  the points of in te rsec t ion  of the f iber  axes  with this plane f o r m  a 
two-dimensional  Po i sson  field of points.  The remaining  fea tures  of the f i l t e r s  a re  the same  as those de-  
sc r ibed  in Sec. 2. For  such a s t ruc tu re  

I (a); 1 �9 cos 01 ~< 1 (5.1) 
k~(~)= 0, I ~ c o s 0 ] > t  

where  0 is  the angle between the plane Q and the direct ion p, and the function I(k) is defined in Eq. (3.2). 

The sect ion of the r andom function c~(t) has  the density of the distr ibution (2 .15) for  0 ~ ~2 - I  , and 
Hx(~) = 6 ( ~ - ( ~ ' ) ,  kx = 1 for  O=v2 -1, where the "constant"  quantity (~' a lso has  the density of the distr ibution 
(2.15). When 0=~2 -1, the function ~(t) loses  i ts  ergodic  p roper ty .  

Structure  C. Let  f i l te rs  with a s t ruc tu re  C, homogeneous with r e s p e c t  to ~,  be fo rmed  f r o m  r e c t i -  
l inear  mutual ly  para l le l  f ibers ,  where  the points of in tersec t ion  of the axes  of these  f ibe r s  with a plane 
perpendicu la r  to them f o r m  the nodes of a r ec tangu la r  mesh  with p a r a m e t e r s  d and d' .  The cor re la t ion  
coeff icient  of the p r o c e s s  (~(t) for  such a f i l ter  has  the f o r m  

k~@)----{*(~'0)' {)~=~/2 (5.2) 
�9 i, 0 = ~ / 2  

where r is  a per iodic  function with the per iod  d/2R cos 0 and, consequently,  the concentrat ion of the e jec ta  
of the function c~(t) above the level  <c~> is  equal to 2R cos 0 / d  in the calculation made per  unit of the ~- in-  
t e rva l .  

St ructure  A' .  In the f i l te rs  of A(A), homogeneous with r e s p e c t  to ~, let  a port ion of the c i r cu la r  f i -  
be rs  be r ep laced  by aggrega tes  of double, t r ip le ,  etc.(uncarded) f ibers .  A s t ruc tu re  A' is  then fo rmed  
which is  dif ferent  f r o m  the s t ruc tu re  A, homogeneous with r e s p e c t  to ~, since the set  of initial  s t ruc tu ra l  
e l ements  now contains,  along with the single f ibers ,  a lso  unearded aggrega tes .  If,  in a f i r s t  approximat ion,  
we consider  such aggrega tes  as c i r cu l a r  f ibe r s  with i nc rea sed  radi i ,  then the p re sence  of the la t ter  in f i l -  
t e r s  man i fes t s  i tself ,  in accordance  with Eq. (2.15), in an i nc rea sed  [in compar i son  with f i l t e r s  of A(A)] 
ampli tude of the random osci l la t ions of the function ~(t), without at  the same  t ime changing the concen t ra -  
tion of i ts  in te r sec t ions  with the level  <c~). F i l t e r s  with uncarded f ibers  a re  encountered in prac t ice .  

The examples  given show that  the analys is  of the random function ~(t) enables us to obtain useful in-  
format ion  concerning the s t ruc tu re  of a given f ibered  ma te r i a l .  
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